PDF [Download] Prompt Engineering for

Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs by James Phoenix, Mike Taylor

Download new books free Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs 9781098153434


Download Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs PDF

  • Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs
  • James Phoenix, Mike Taylor
  • Page: 422
  • Format: pdf, ePub, mobi, fb2
  • ISBN: 9781098153434
  • Publisher: O'Reilly Media, Incorporated

Download eBook




Download new books free Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs 9781098153434

Prompt Engineering for Generative AI - Mike Taylor Mike Taylor. Undertitel Future-proof inputs for reliable ai outputs. ISBN 9781098153434. Språk Engelska. Vikt 310 gram. Utgiven 2024-05-29. Förlag O'Reilly  Prompt Engineering for Generative AI: Future-Proof Inputs Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs. James / Taylor Phoenix. (0 avis) Donner votre avis. 396 pages, parution le  What Is Prompt Engineering? Prompt engineering is the process of writing, refining and optimizing inputs to encourage generative AI systems to create specific, high-quality outputs. Future-Proof Inputs for Reliable AI Outputs (Paperback) With this book, you'll gain a solid foundation in generative AI, including how to apply these models in practice. When first integrating LLMs and diffusion  Future-Proof Inputs for Reliable AI Outputs Acheter le livre Prompt Engineering for Generative AI: Future-Proof Inputs for Reliable AI Outputs par james phoenix,mike taylor à Indigo. Prompt Engineering for Generative AI: Future-Proof Inputs When first integrating LLMs and diffusion models into their workflows, most developers struggle to coax reliable enough results from them to use in automated  Future-Proof Inputs for Reliable AI Outputs (Paperback) With this book, you'll gain a solid foundation in generative AI, including how to apply these models in practice. When first integrating LLMs and diffusion 



Links: pdf , pdf , pdf , pdf , pdf , pdf , pdf , pdf , pdf , pdf , pdf , pdf , pdf , pdf , pdf .

0コメント

  • 1000 / 1000